Miscellaneous properties of embeddings of line, total and middle graphs
نویسندگان
چکیده
Chartrand et al. (J. Combin. Theory Ser. B 10 (1971) 12–41) proved that the line graph of a graph G is outerplanar if and only if the total graph of G is planar. In this paper, we prove that these two conditions are equivalent to the middle graph of G been generalized outerplanar. Also, we show that a total graph is generalized outerplanar if and only if it is outerplanar. Later on, we characterize the graphs G such that R(G) is planar, where R is a composition of the operations line, middle and total graphs. Also, we give an algorithm which decides whether or not R(G) is planar in an O(n) time, where n is the number of vertices of G. Finally, we give two characterizations of graphs so that their total and middle graphs admit an embedding in the projective plane. The 4rst characterization shows the properties that a graph must verify in order to have a projective total and middle graph. The second one is in terms of forbidden subgraphs. c © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Labeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملZagreb Indices and Coindices of Total Graph, Semi-Total Point Graph and Semi-Total Line Graph of Subdivision Graphs
Expressions for the Zagreb indices and coindices of the total graph, semi-total point graph and of semi-total line graph of subdivision graphs in terms of the parameters of the parent graph are obtained, thus generalizing earlier existing results.
متن کاملA survey of the studies on Gallai and anti-Gallai graphs
The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are adjacent if two of the end vertices of the corresponding edges in G coincide and the other two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement of its Gallai graph in L(G). Attributed to Gallai (1967), the study ...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 233 شماره
صفحات -
تاریخ انتشار 2001